

SPRINTS FOR ROMBAT SPORTS

PERFORMANCE

 FOR

For sprint training we utilise cycle based as it is the easiest way to control the intensity of the sessions. However, we have included other training methods for you also.

For all the protocols you should look to complete them as fast as possible. It is important to remember the aim is to go all out, as fast and hard as you can in order to promote physiological adaptations.
\square WEARING A HEART RATE MONITOR
CAN BE USEFUL TO LOOK AT RECOVERY

REMEMBER: Only undergo exercise if fit and healthy to do so.

SPRINT PROTOCOL III EXERCISE BIKE

\author{

* Abertay University。
}

When it comes to bike sprints you ideally want a bike which you can set resistance such as a Wattbike, or if you are lucky enough to have access to a sports science lab, a Lode bike for example.

The reasons for this that you ideally want to set the bike to have around 7.5 percent of your body weight for the sprints. The Wattbike for example has a comparison chart to allow you to set air flow and magnetic to match. However even if you have access to a spin bike, you can still use it, by cranking up the resistance as high as you can. What you wont be able to do is to be as precise.

> WHEN PERFORMING SPRINTS ON THE BIKE WE RECOMMEND THAT YOU SPEND TIME TO ADJUST THE SEAT AND SADDLE TO THE IDEAL POSITION AND THAT YOU REMAIN SEATED THROUGH THE SRINTS. TRY TO AVOID THE TEMPTATION TO STAND UP.

BIKE SPRINTS Å

POWER

20 seconds x 4 repeats (Power)

1. Set resistance to 3 and bring the speed up to 100RPM
2. Increase the resistance to 17 and cycle as fast as possible through the resistance for 20 seconds.
3. Reduce resistance back to 3 and cycle at 60RPM.
4. For power you should look to do 4×20 s sprints with 120 s recovery between each sprint

20 seconds x 4 repeats (Power)

1. Set resistance to 3 and bring the speed up to 100RPM
2. Increase the resistance to 17 and cycle as fast as possible through the resistance for 20 seconds.
3. Reduce resistance back to 3 and cycle at 60RPM.
4. For endurance you should look to do 4×20 s sprints with 40 s recovery between each sprint. You should look to bring this to 20 s recovery as you get used to the protocol

BIKE SPRINTS A A : splik POWER
 15seconds x 6 repeats (Power)

1. Ensure the resistance is at lowest setting and bring the speed up to 100RPM
2. Increase the resistance by 2.5 turns and cycle as fast as possible through the resistance for 15 seconds.
3. Remove resistance and cycle at 60RPM.
4. For power you should look to do $6 x 15$ s sprints with 90 s recovery between each sprint

WVEARING A HEART RATE MONITOR WILL ALLOW YOU TO EVALUATE YOUR RECOVERY

15seconds x 6 repeats (Power)

WORKOUT TIME: LESS THAN 10mins

ENDURANCE
ADAPTATIONS

1. Ensure the resistance is at lowest setting and bring the speed up to 100RPM
2. Increase the resistance by 2.5 turns and cycle as fast as possible through the resistance for 15 seconds.
3. Remove resistance and cycle at 60RPM.
4. For endurance carry out 10×10 s sprints with 20 s recovery. Look to bring the recovery down with time until 10s recovery.

BIKE SPRINTS 2 גwiti

10 seconds x 10 repeats (Power)

SPRINT PROTOCOL mimunNING

POWER

$20 \times 15 \mathrm{~m}$ repeats (Power)

1. Each sprint should be below 3 seconds in duration.
2. For power adaptations then the recovery time between each sprint should be 24 seconds.
3. Recovery should not drop below 15 seconds if you are looking to promote power adaptations.

ssej 10 s£ Nกy

Кıəлоэәу spuoэas 9

WORKOUT TIME: LESS THAN 3 mins

RECOVERY ADAPTATIONS

$20 \times 15 \mathrm{~m}$ repeats (Recovery)

1.Each sprint should be below 3 seconds in duration.
2.For recovery adaptations then the recovery time between each sprint should be 6 seconds.
3.To progress this then you should look to bring the recovery down to 3 seconds to match the work duration.

POWER

$10 \times 15 \mathrm{~m}$ shuttle (Power)

1. Each sprint is now covering a 30 m distance with a 180 degrees turn at 15 m .
2. The time to complete this should be below 6 seconds.
3. The recovery between each sprint should be 42 seconds to promote improved power.
4. As you progress you can change this to a sprint that is every 30s regardless of how long each sprint takes.

MAKE IT HARDER BY TOUCHING THE LINE WITH YOUR HAND AS YOU TURN AT THE 15 METRE LINE!

$10 \times 15 \mathrm{~m}$ shuttle (Recovery)

1. Each sprint is now covering a 30 m distance with a 180 degrees turn at 15 m . The time to complete this should be below 6 seconds. T
2. The recovery between each sprint should be 6 seconds to promote recovery.
3. As you progress you can change this to a sprint that is every 12 s regardless of how long each sprint takes.

UNLIMITED

POWER

$6 \times 200 \mathrm{~m}$ (25s) repeats (Power)

1. Each 200 m repeat should take about 25 s .
2. Therefore, to promote power adaptations then you would be looking for 180 seconds recovery between each sprint.
3.This should be an active recovery looking to keep the body moving. If using distance then you should look to cover a minimum of 300 m in the 180 seconds.

These can be done either using time or distance to determine duration. When outdoors it is normally easier to use time unless you have something like a Garmin or other GPS watch where you can set up training protocols based on distance.

RECOVERY

6x200m (25s) repeats (Recovery)

1. Each 200 m repeat should take about 25 s .
2. Therefore, to promote recovery adaptations then you would be looking for 20 seconds recovery between each sprint.
3.If using distance, then it should be 75 m recovery.

UNLIMITED

Undulating repeats (upwards for power)

Undulating repeats (upwards for recovery
50m (recovery 6s)
100m (recovery 12s)
200m (recovery 24s)
300 m (recovery 36s)
400m (recovery 48s)
300 m (recovery 36s)
200m (recovery 24s)
100m (recovery 12s)
50m (recovery 6s).

SPRINT PROTOCOL IIIBAG WORK

Abertay University

POWER

6×20 seconds with 60 second recovery.

1. Use a heavy bag striking with only power shots (hooks, body / head height)
2. Aim to go all about from a fixed position, paying attention to technique.

Whilst this is about as many strikes as you can in the time, good technique is crucial.
3.Remain standing during the 60 second recovery period.

It is important that hand wraps and appropriate gloves are worn. The bag sessions presented here are maximal effort, meaning you must go all out whilst keeping technique. We want full extension of the punches, and to avoid close in small range (rabbit) punches as the aim is to increase heart rate and workload. When in the recovery period it is important to stand stationary and be ready to repeat.

RECOVERY

6×20 seconds with 20 second recovery.

1. Use a heavy bag striking with only straight shots (jab, cross)
2. Aim to go all about from a fixed position, paying attention to technique.

Whilst this is about as many strikes as you can in the time, good technique is crucial. However it is important that this is above a maximal effort, i.e. all out.
3.Remain standing during the 60 second recovery period. Abertay

BAG WORK :
 BAG WORK ล̀ BAc

POWER

6×20 seconds with 60 second recovery.

1. Use the heavy bag you will throw a rear hand cross, followed by lead hand hook. The key is is to start from the stationary position and strike as fast as possible with maximum power and mechanics.
2. Aim to go all paying attention to technique and using the transfer of weight from the rear hand landing to generate power from the lead leg delivering the hook.
3.Remain standing during the 60 second recovery period.

WORKOUT TIME
LESS THAN 11 mins

RECOVERY

Undulating

10s (recovery 20s) 20s (recovery 40s) 30s (recovery 60s) 30 m (recovery 60s) 20s (recovery 40s) 10s (recovery 20s)

1. Striking should be all out, with good technique.
2. Recovery should be standing near the bag.
3. Each round you should attempt to work harder than the last.
4. Always touching the bag, even if you move around it.

SPRINTS FOR COMBAT SPORTS

JOHN BABRAJ PhD.:
John is a senior lecturer in exercise physiology at Abertay University, Dundee. He has a PhD looking at protein metabolism in response to exercise and nutrition. A major focus of his research has been on sprint interval training, and he is viewed as one of the leading experts in this training modality. Currently a major research focus is the physiological responses to sprint interval training that improve recovery of athletes during competition, for example within and between rounds in combat sports.

ANDREW USHER MRes SENr.:

Andrew is a performance specialist working with a range of athletes, ranging from amateur , professional boxers and MMA athletes. He hold a Masters of Research degree in Sport and Exercise Science, where he looked into the underlying physiology of amateur boxing. He is currently undertaking his PhD at Abertay University where he is undertaking ground breaking research into the physiological demands of professional boxing.

www.combatsportperformance.com

For information on personalised training, or to enquire about strength and conditioning, performance nutrition or performance testing, then please email Andrew Usher at andrew@andrewusher.com

For more information on sports science for combat sports, or any of our undergraduate or postgraduate degree courses then please visit the Abertay University website.

